

PAQ-003-001518 Seat No. _____

B. Sc. (Sem. V) (CBCS) Examination

October / November - 2018 Biotechnology: BT-502 (Genetics & Molecular Biology)

Faculty Code: 003

Subject Code: 001518				
Time	: 2	$\frac{1}{2}$ Hours] [Total Marks : 70		
Inst	ructi	ions: (1) All questions are compulsory. (2) The right side figures indicates total marks of the question. (3) Draw the figure wherever necessary.		
1	Obje	ctive Questions : 20×1=20		
	(1)	A man of A-blood group marries women of AB blood group. Which type of progeny would indicate that man is heterozygous A?		
	(2)	How many different types of genetically different gametes will be produced by a heterozygous plant having the genotype AABbCC?		
	(3)	Gene that affects two or more seemingly unrelated phenotypic traits is called		
	(4)	The genotype of an individual with Klinefelter's syndrome will be		
	(5)	Members of the same species which are capable of interbreeding is best described as a(n)		
	(6)	If 25% of an organism's DNA is thymine, then% is guanine and% adenine.		
	(7)	The E. coli chromosome has 7.2×10^6 bp; a replication fork progresses at about 1000 nucleotides/sec. Therefore, the minimum time required to complete replication is about minutes.		

PAG	2-003-	001518] 2 [Contd
		(6) Define : C Value
		(5) Write a note on Genetic Code.
		(4) Describe Linkers.
		(3) Describe SOS Repair Mechanism.
		(2) Explain Transduction.
		(1) Explain Dominance type of gene interaction.
2	(a)	Answer any three: 3×2=6
	(20)	A collection of total genomic DNA from a single organism is called
	(19)	In pUC 18, UC stands for
	(18)	can recognizes a specific DNA sequence and cuts within a DNA molecule.
	(17)	enzymes are used to join pieces of DNA.
	(16)	The expression of the trp operon in E. coli is regulated in by the availability of the amino acid tryptophan. This regulatory process is referred to as
	(15)	The full form of TBP is
	(14)	Hypothesis that states 'Some amino acids are coded for by more than one codon' is known as
	(13)	The uptake of DNA fragments from surroundings by a bacterium is termed as
	(12)	The exchange of genetic material through cell to cell contact from a donor bacterium to recipient bacterium is known as
	(11)	and first confirmed that the replication of DNA was semiconservative.
	(10)	Unwinding of DNA is done by
	(9)	Okazaki fragments are used to elongate
	(8)	The actual synthesis of DNA in E. coli is the function of

(b) Answer any three:

 $3 \times 3 = 9$

- (1) Explain complementary type of Non allelic interaction.
- (2) Write a note on Extra Chromosomal Inheritance.
- (3) Explain Mis-Match Repair Mechanism.
- (4) Describe Polynucleotide kinase and Alkaline Phosphatase.
- (5) Describe Types of RNA molecules.
- (6) Define: Cistron, Recon and Muton

(c) Answer any two:

 $2 \times 5 = 10$

- (1) Write a note on Mendelian inheritance pattern and Laws of Heredity.
- (2) Write a detail note on prokaryotic replication.
- (3) Describe Plasmid in detail.
- (4) Write a note on Transcription.
- (5) Explain Lac operon in detail.

3 (a) Answer any three:

 $3\times2=6$

- (1) Write a note on Concepts of Central Dogma.
- (2) Explain Meselson and Stahl Experiment.
- (3) Describe Adaptors.
- (4) Explain in short Trp Operon.
- (5) Role of tRNA in protein synthesis.
- (6) Write a note on law of purity of gametes with appropriate example.

(b) Answer any three:

 $3 \times 3 = 9$

- (1) Explain Supplementary type of Non allelic interaction.
- (2) Write a note on DNA polymerase.
- (3) Write in detail Restriction Endonucleases.
- (4) Explain post translational modification.
- (5) Explain 5' capping of mRNA and Polyadenylation.
- (6) Explain homopolymer tailing.

(c) Answer any two:

 $2 \times 5 = 10$

- (1) Write a note on structure of eukaryotic gene.
- (2) Write in detail Watson and Crick Model.
- (3) Describe in detail Direct DNA repair mechanism.
- (4) Application of Genetic Engineering.
- (5) Explain Prokaryotic Translation in detail.